Consensus and Resolution

The Consensus Theorem

((ab)(¯ac))(bc)=(ab)(¯ac)

((ab)(¯ac))(bc)=((ab)(¯ac))(T(bc))Identity=((ab)(¯ac))((a¯a)(bc))Excluded Middle=((ab)(¯ac))((a(bc))(¯a(bc)))Distributivity=((ab)(¯ac))(((ab)c)((¯ac)b))Associativity and Commutativity=((ab)((ab)c))((¯ac)((¯ac)b))Associativity and Commutativity=(ab)(¯ac)Absorption 2 times


((ab)(¯ac))(bc)=(ab)(¯ac)

((ab)(¯ac))(bc)=((ab)(¯ac))(T(bc))Identity=((ab)(¯ac))((a¯a)(bc))Noncontradiction=((ab)(¯ac))((a(bc))(¯a(bc)))Distributivity=((ab)(¯ac))(((ab)c)((¯ac)b))Associativity and Commutativity=((ab)((ab)c))((¯ac)((¯ac)b))Associativity and Commutativity=(ab)(¯ac)Absorption 2 times


Resolution

Resolution is extremely important in the field of logic. It allows for a sound and complete proof system for preposition logic.

ac(ab)(¯bc)=(a¯b)(bc)ac

We will do this in parts.

ac(ab)(¯bc)

ac(ac)((a¯b)(bc))Generalization=(ac)(a¯b)(bc)Associativity=((ac)(a¯b)(bc))TIdentity=(a¯b)(ac)T(bc)Associativity and Commutativity=(a¯b)(ac)(¯bb)(bc)Excluded Middle=(ab)(¯bc)Distributivity


(ab)(¯bc)=(a¯b)(bc)

(ab)(¯bc)=(ac)(a¯b)(bc)Preform above proof in reverse=((a¯b)(bc))(ac)Associativity and Commutativity=(a¯b)(bc)The Consensus Theorem


(a¯b)(bc)ac

(a¯b)(bc)=(ab)(ac)(¯bb)(¯bc)Distributivity=(ab)(ac)T(¯bc)Excluded Middle=((ac)(ab)(¯bc))TAssociativity and Commutativity=(ac)(ab)(¯bc)Identity=(ac)((ab)(¯bc))Associativityac

Boolean Algebra Series