Consensus and Resolution
The Consensus Theorem
((a∧b)∨(¯a∧c))∨(b∧c)=(a∧b)∨(¯a∧c)
((a∧b)∨(¯a∧c))∨(b∧c)=((a∧b)∨(¯a∧c))∨(T∧(b∧c))Identity=((a∧b)∨(¯a∧c))∨((a∨¯a)∧(b∧c))Excluded Middle=((a∧b)∨(¯a∧c))∨((a∧(b∧c))∨(¯a∧(b∧c)))Distributivity=((a∧b)∨(¯a∧c))∨(((a∧b)∧c)∨((¯a∧c)∧b))Associativity and Commutativity=((a∧b)∨((a∧b)∧c))∨((¯a∧c)∨((¯a∧c)∧b))Associativity and Commutativity=(a∧b)∨(¯a∧c)Absorption 2 times((a∨b)∧(¯a∨c))∧(b∨c)=(a∨b)∧(¯a∨c)
((a∨b)∧(¯a∨c))∧(b∨c)=((a∨b)∧(¯a∨c))∧(T∨(b∨c))Identity=((a∨b)∧(¯a∨c))∧((a∧¯a)∨(b∨c))Noncontradiction=((a∨b)∧(¯a∨c))∧((a∨(b∨c))∧(¯a∨(b∨c)))Distributivity=((a∨b)∧(¯a∨c))∧(((a∨b)∨c)∧((¯a∨c)∨b))Associativity and Commutativity=((a∨b)∧((a∨b)∨c))∧((¯a∨c)∧((¯a∨c)∨b))Associativity and Commutativity=(a∨b)∧(¯a∨c)Absorption 2 timesResolution
Resolution is extremely important in the field of logic. It allows for a sound and complete proof system for preposition logic.
a∧c⇒(a∨b)∧(¯b∨c)=(a∧¯b)∨(b∧c)⇒a∨c
We will do this in parts.
a∧c⇒(a∨b)∧(¯b∨c)
a∧c⇒(a∧c)∨((a∧¯b)∨(b∧c))Generalization=(a∧c)∨(a∧¯b)∨(b∧c)Associativity=((a∧c)∨(a∧¯b)∨(b∧c))∨TIdentity=(a∧¯b)∨(a∧c)∨T∨(b∧c)Associativity and Commutativity=(a∧¯b)∨(a∧c)∨(¯b∧b)∨(b∧c)Excluded Middle=(a∨b)∧(¯b∨c)Distributivity(a∨b)∧(¯b∨c)=(a∧¯b)∨(b∧c)
(a∨b)∧(¯b∨c)=(a∧c)∨(a∧¯b)∨(b∧c)Preform above proof in reverse=((a∧¯b)∨(b∧c))∨(a∧c)Associativity and Commutativity=(a∧¯b)∨(b∧c)The Consensus Theorem(a∧¯b)∨(b∧c)⇒a∨c
(a∧¯b)∨(b∧c)=(a∨b)∧(a∨c)∧(¯b∨b)∧(¯b∨c)Distributivity=(a∨b)∧(a∨c)∧T∧(¯b∨c)Excluded Middle=((a∨c)∧(a∨b)∧(¯b∨c))∧TAssociativity and Commutativity=(a∨c)∧(a∨b)∧(¯b∨c)Identity=(a∨c)∧((a∨b)∧(¯b∨c))Associativity⇒a∨c