Consensus and Resolution
The Consensus Theorem
$((a \wedge b) \vee (\overline{a} \wedge c)) \vee (b \wedge c) \quad = \quad (a \wedge b) \vee (\overline{a} \wedge c)$
\[\begin{align} &((a \wedge b) \vee (\overline{a} \wedge c)) \vee (b \wedge c) && \\ &= \color{red}( (a \wedge b) \vee (\overline{a} \wedge c) \color{red}) \vee \color{red}( \color{green}T \wedge (b \wedge c) \color{red}) && \text{Identity} \\ &= \color{red}( (a \wedge b) \vee (\overline{a} \wedge c) \color{red}) \vee \color{red}( (a \vee \overline{a}) \wedge (b \wedge c) \color{red}) && \text{Excluded Middle} \\ &= \color{red}( (a \wedge b) \vee (\overline{a} \wedge c) \color{red}) \vee \color{red}( (a \wedge (b \wedge c)) \vee (\overline{a} \wedge (b \wedge c)) \color{red}) && \text{Distributivity} \\ &= \color{red}( (a \wedge b) \vee (\overline{a} \wedge c) \color{red}) \vee \color{red}( ((a \wedge b) \wedge c) \vee ((\overline{a} \wedge c) \wedge b) \color{red}) && \text{Associativity and Commutativity} \\ &= \color{red}( (a \wedge b) \vee ((a \wedge b) \wedge c) \color{red}) \vee \color{red}((\overline{a} \wedge c) \vee ((\overline{a} \wedge c) \wedge b) \color{red}) && \text{Associativity and Commutativity} \\ &= (a \wedge b) \vee (\overline{a} \wedge c) && \text{Absorption 2 times} \\ \end{align}\]$((a \vee b) \wedge (\overline{a} \vee c)) \wedge (b \vee c) \quad = \quad (a \vee b) \wedge (\overline{a} \vee c)$
\[\begin{align} &((a \vee b) \wedge (\overline{a} \vee c)) \wedge (b \vee c) && \\ &= \color{red}( (a \vee b) \wedge (\overline{a} \vee c) \color{red}) \wedge \color{red}( \color{green}T \vee (b \vee c) \color{red}) && \text{Identity} \\ &= \color{red}( (a \vee b) \wedge (\overline{a} \vee c) \color{red}) \wedge \color{red}( (a \wedge \overline{a}) \vee (b \vee c) \color{red}) && \text{Noncontradiction} \\ &= \color{red}( (a \vee b) \wedge (\overline{a} \vee c) \color{red}) \wedge \color{red}( (a \vee (b \vee c)) \wedge (\overline{a} \vee (b \vee c)) \color{red}) && \text{Distributivity} \\ &= \color{red}( (a \vee b) \wedge (\overline{a} \vee c) \color{red}) \wedge \color{red}( ((a \vee b) \vee c) \wedge ((\overline{a} \vee c) \vee b) \color{red}) && \text{Associativity and Commutativity} \\ &= \color{red}( (a \vee b) \wedge ((a \vee b) \vee c) \color{red}) \wedge \color{red}((\overline{a} \vee c) \wedge ((\overline{a} \vee c) \vee b) \color{red}) && \text{Associativity and Commutativity} \\ &= (a \vee b) \wedge (\overline{a} \vee c) && \text{Absorption 2 times} \\ \end{align}\]Resolution
Resolution is extremely important in the field of logic. It allows for a sound and complete proof system for preposition logic.
$a \wedge c \quad \Rightarrow \quad (a \vee b) \wedge (\overline{b} \vee c) \quad = \quad (a \wedge \overline{b}) \vee (b \wedge c) \quad \Rightarrow \quad a \vee c$
We will do this in parts.
$a \wedge c \quad \Rightarrow \quad (a \vee b) \wedge (\overline{b} \vee c)$
\[\begin{align} &a \wedge c && \\ &\Rightarrow (a \wedge c) \vee ((a \wedge \overline{b}) \vee (b \wedge c)) &&\text{Generalization} \\ &= (a \wedge c) \vee (a \wedge \overline{b}) \vee (b \wedge c) &&\text{Associativity} \\ &= ((a \wedge c) \vee (a \wedge \overline{b}) \vee (b \wedge c)) \vee \color{green}T &&\text{Identity} \\ &= (a \wedge \overline{b}) \vee (a \wedge c) \vee \color{green}T \vee (b \wedge c) &&\text{Associativity and Commutativity} \\ &= (a \wedge \overline{b}) \vee (a \wedge c) \vee (\overline{b} \wedge b) \vee (b \wedge c) &&\text{Excluded Middle} \\ &= (a \vee b) \wedge (\overline{b} \vee c) &&\text{Distributivity} \end{align}\]$(a \vee b) \wedge (\overline{b} \vee c) \quad = \quad (a \wedge \overline{b}) \vee (b \wedge c)$
\[\begin{align} &(a \vee b) \wedge (\overline{b} \vee c) && \\ &= (a \wedge c) \vee (a \wedge \overline{b}) \vee (b \wedge c) &&\text{Preform above proof in reverse} \\ &= ((a \wedge \overline{b}) \vee (b \wedge c)) \vee (a \wedge c) &&\text{Associativity and Commutativity} \\ &= (a \wedge \overline{b}) \vee (b \wedge c) &&\text{The Consensus Theorem} \end{align}\]$(a \wedge \overline{b}) \vee (b \wedge c) \quad \Rightarrow \quad a \vee c$
\[\begin{align} &(a \wedge \overline{b}) \vee (b \wedge c) && \\ &= (a \vee b) \wedge (a \vee c) \wedge (\overline{b} \vee b) \wedge (\overline{b} \vee c) &&\text{Distributivity} \\ &= (a \vee b) \wedge (a \vee c) \wedge \color{green}T \wedge (\overline{b} \vee c) &&\text{Excluded Middle} \\ &= ((a \vee c) \wedge (a \vee b) \wedge (\overline{b} \vee c)) \wedge \color{green}T &&\text{Associativity and Commutativity} \\ &= (a \vee c) \wedge (a \vee b) \wedge (\overline{b} \vee c) &&\text{Identity} \\ &= (a \vee c) \wedge ((a \vee b) \wedge (\overline{b} \vee c)) &&\text{Associativity} \\ &\Rightarrow a \vee c \end{align}\]