Summary of Laws

Definitions of Operations

The operations $\neg$, $\vee$, and $\wedge$ are the fundamental operations with which we can define all other operations. Note that $\overline{a}$ is used to represent $\neg a$ in order to make expressions more readable.

  Material Implication: $\hspace{3.5cm} (a \Rightarrow b) = (\overline{a} \vee b)$

  Mirror: $\hspace{6cm} (a \Leftarrow b) = (b \Rightarrow a)$

  Antisymmetry / Double Implication: $\hspace{0.8cm} (a = b) = (a \Rightarrow b) \wedge (a \Leftarrow b)$

  Exclusion: $\hspace{5.5cm} (a \neq b) = (\overline{a = b}) = (a = \overline{b}) = (\overline{a} = b)$


For equality and unequality, we have additional simplifications to get them completely in terms of $\neg$, $\vee$, and $\wedge$.

\[\begin{align} &(a = b) &\quad = \quad& (\overline{a} \vee b) \wedge (a \vee \overline{b}) &\quad = \quad& (a \wedge b) \vee (\overline{a} \wedge \overline{b}) \\ &(a \neq b) &\quad = \quad& (a \vee b) \wedge (\overline{a} \vee \overline{b}) &\quad = \quad& (\overline{a} \wedge b) \vee (a \wedge \overline{b}) \end{align}\]


Truth Tables

The following defined how boolean values interact with each other via our defined operations. These truth tables can be derived from the axioms. They are not definitions.

    $\color{green}T$ $\color{red}F$
Negation (NOT) $\neg$ $\color{red}F$ $\color{green}T$
    $\color{green}T\color{green}T$ $\color{green}T\color{red}F$ $\color{red}F\color{green}T$ $\color{red}F\color{red}F$
Conjunction (AND) $\wedge$ $\color{green}T$ $\color{red}F$ $\color{red}F$ $\color{red}F$
Disjunction (OR) $\vee$ $\color{green}T$ $\color{green}T$ $\color{green}T$ $\color{red}F$
Implication $\Rightarrow$ $\color{green}T$ $\color{red}F$ $\color{green}T$ $\color{green}T$
Converse $\Leftarrow$ $\color{green}T$ $\color{green}T$ $\color{red}F$ $\color{green}T$
Equality $=$ $\color{green}T$ $\color{red}F$ $\color{red}F$ $\color{green}T$
Unequality (XOR) $\neq$ $\color{red}F$ $\color{green}T$ $\color{green}T$ $\color{red}F$


Boolean Variables Interacting with Boolean Value

This is a combination of base, identity, and anti-identity laws. Two of them are axioms, labeled with an asterisk.

\[\begin{align} &a \wedge \color{green}T \quad=\quad a \ \ \ ^* &\qquad\qquad& a \wedge \color{red}F \quad=\quad \color{red}F \\ &a \vee \color{green}T \quad=\quad \color{green}T &\qquad\qquad& a \vee \color{red}F \quad=\quad a \ \ \ ^* \\[10pt] &a \Rightarrow \color{green}T \quad=\quad \color{green}T &\qquad\qquad& a \Rightarrow \color{red}F \quad=\quad \overline{a} \\ &a \Leftarrow \color{green}T \quad=\quad a &\qquad\qquad& a \Leftarrow \color{red}F \quad=\quad \color{green}T \\[10pt] &a = \color{green}T \quad=\quad a &\qquad\qquad& a = \color{red}F \quad=\quad \overline{a} \\ &a \neq \color{green}T \quad=\quad \overline{a} &\qquad\qquad& a \neq \color{red}F \quad=\quad a \\ \end{align}\]


Boolean Variables Interacting with Themselves

This is called double negation

\[\overline{(\overline{a})} = a\]

This is a combination of idempotent, reflexive, and anti-reflective laws.

\[\begin{align} &a \wedge a \quad=\quad a &\qquad\qquad& a \Rightarrow a \quad=\quad \color{green}T &\qquad\qquad& a = a \quad=\quad \color{green}T\\ &a \vee a \quad=\quad a &\qquad\qquad& a \Leftarrow a \quad=\quad \color{green}T &\qquad\qquad& a \neq a \quad=\quad \color{red}F \end{align}\]

This is a combination of the law of the excluded middle, the law of non-contradiction, exclusion, and indirect proofs. The ones that are axioms are labeled with an asterisk.

\[\begin{align} &a \wedge \overline{a} \quad=\quad \color{red}F \ \ \ ^* &\qquad\qquad& a \Rightarrow \overline{a} \quad=\quad \overline{a} &\qquad\qquad& a = \overline{a} \quad=\quad \color{red}F\\ &a \vee \overline{a} \quad=\quad \color{green}T \ \ \ ^* &\qquad\qquad& a \Leftarrow \overline{a} \quad=\quad a &\qquad\qquad& a \neq \overline{a} \quad=\quad \color{green}T \end{align}\]


Commutativity and Contrapositive

The commonality here is that we are flipping the order of arguments. The ones that are axioms are labeled with an asterisk.

\[\begin{align} &a \wedge b \quad=\quad b \wedge a \ \ \ ^* &\qquad\qquad& a \Rightarrow b \quad=\quad \overline{b} \Rightarrow \overline{a} &\qquad\qquad& a = b \quad=\quad b = a \\ &a \vee b \quad=\quad b \vee a \ \ \ ^* &\qquad\qquad& a \Leftarrow b \quad=\quad \overline{b} \Leftarrow \overline{a} &\qquad\qquad& a \neq b \quad=\quad b \neq a \end{align}\]


Associativity

\[\begin{align} &a \wedge (b \wedge c) \quad = \quad (a \wedge b) \wedge c &\qquad\qquad& a \vee (b \vee c) \quad = \quad (a \vee b) \vee c \\[10pt] &a = (b = c) \quad = \quad (a = b) = c &\qquad\qquad& a \neq (b = c) \quad = \quad (a = b) \neq c \\ &a \neq (b \neq c) \quad = \quad (a \neq b) \neq c &\qquad\qquad& a = (b \neq c) \quad = \quad (a = b) \neq c \\ \end{align}\]

There is no associativity for $\Rightarrow$ and $\Leftarrow$. The same form of expression actually falls under distributivity.


Distributivity / Factoring

The combinations that I left out, I left out for good reasons. Maybe you can figure out why. For example, I never include expressions with $\neq$ since $(a \neq b) = (a = \overline{b})$. The laws labeled with an asterisk are axioms.

\[\begin{align} &a \wedge (b \wedge c) \quad = \quad (a \wedge b) \wedge (a \wedge c) &\qquad\qquad& a \vee (b \vee c) \quad = \quad (a \vee b) \vee (a \vee c) \\ &a \wedge (b \vee c) \quad = \quad (a \wedge b) \vee (a \wedge c) \ \ \ ^* &\qquad\qquad& a \vee (b \wedge c) \quad = \quad (a \vee b) \wedge (a \vee c) \ \ \ ^* \\ &a \wedge (b \Rightarrow c) \quad = \quad \text{not useful} &\qquad\qquad& a \vee (b \Rightarrow c) \quad = \quad (a \vee b) \Rightarrow (a \vee c) \\ &a \wedge (b = c) \quad = \quad \text{not useful} &\qquad\qquad& a \vee (b = c) \quad = \quad (a \vee b) = (a \vee c) \\[10pt] &a \Rightarrow (b \wedge c) \quad = \quad (a \Rightarrow b) \wedge (a \Rightarrow c) &\qquad\qquad& a \Leftarrow (b \wedge c) \quad = \quad (a \Leftarrow b) \vee (a \Leftarrow c)\\ &a \Rightarrow (b \vee c) \quad = \quad (a \Rightarrow b) \vee (a \Rightarrow c) &\qquad\qquad& a \Leftarrow (b \vee c) \quad = \quad (a \Leftarrow b) \wedge (a \Leftarrow c)\\ &a \Rightarrow (b \Rightarrow c) \quad = \quad (a \Rightarrow b) \Rightarrow (a \Rightarrow c) &\qquad\qquad& a \Leftarrow (b \Rightarrow c) \quad = \quad \text{not useful}\\ &a \Rightarrow (b = c) \quad = \quad (a \Rightarrow b) = (a \Rightarrow c) &\qquad\qquad& a \Leftarrow (b = c) \quad = \quad \text{not useful}\\ \end{align}\]

If I write “not useful”, it means that the left-hand side doesn’t simplify to a nice form that matches the pattern of distributivity. Also, there are no good laws of the form $a = (b \circ c)$ where $\circ$ is any boolean operation. Thus, they were omitted.


Absorption and Simplification

We can think of these are special cases of distributivity. They occur so frequently that they are given their own names.

\[\begin{align} &a \wedge (a \vee b) \quad=\quad a &\qquad\qquad& a \wedge (\overline{a} \vee b) \quad=\quad a \wedge b \\ &a \vee (a \wedge b) \quad=\quad a &\qquad\qquad& a \vee (\overline{a} \wedge b) \quad=\quad a \vee b \end{align}\]


De Morgan’s Law / Duality

This is like a form of distributivity, but it’s used so often that it’s given its own name and section

\[\overline{(a \wedge b)} = \overline{a} \vee \overline{b} \qquad\qquad \overline{(a \vee b)} = \overline{a} \wedge \overline{b}\]


Generalization and Specialization

Again, these are very simple, but they are very useful in proofs.

\[(a \wedge b) \Rightarrow a \qquad\qquad a \Rightarrow (a \vee b)\]


Transitivity

\[\begin{align} &(a \wedge b) \wedge (b \wedge c) \quad \Rightarrow \quad (a \wedge c) &\qquad\qquad& (a \vee b) \wedge (b \vee c) \quad \Rightarrow \quad \text{see below} \\ &(a \Rightarrow b) \wedge (b \Rightarrow c) \quad \Rightarrow \quad (a \Rightarrow c) &\qquad\qquad& (a \Leftarrow b) \wedge (b \Leftarrow c) \quad \Rightarrow \quad (a \Leftarrow c) \\[10pt] &(a \Rightarrow b) \wedge (b = c) \quad \Rightarrow \quad (a \Rightarrow c) &\qquad\qquad& (a = b) \wedge (b \Rightarrow c) \quad \Rightarrow \quad (a \Rightarrow c) \\ &(a = b) \wedge (b = c) \quad \Rightarrow \quad (a = c) &\qquad\qquad& (a \neq b) \wedge (b \neq c) \quad \Rightarrow \quad (a = c) \end{align}\]


$(a \vee b) \vee (b \vee c) = (a \wedge c) \vee b$, which does not really fit the pattern of transitivity. The best you can do is apply specialization to the left-hand side.


Direct Proofs

The reason these get their own section is due to their history. They are some of the oldest logical syllogisms that exist.

  Modus Ponens: $\hspace{3cm}(a \Rightarrow b) \wedge a \quad \Rightarrow \quad b$

  Modus Tollens: $\hspace{3cm}(a \Rightarrow b) \wedge \overline{b} \quad \Rightarrow \quad \overline{a}$

  Disjunctive Syllogism: $\hspace{1.75cm}(a \vee b) \wedge \overline{a} \quad \Rightarrow \quad b$


Monotonicity and Antimonotonicity

\[\begin{align} &(a \Rightarrow b) \quad \Rightarrow \quad (c \wedge a) \Rightarrow (c \wedge b) &\qquad\qquad& (a \Rightarrow b) \quad \Rightarrow \quad (c \vee a) \Rightarrow (c \vee b) \\ &(a \Rightarrow b) \quad \Rightarrow \quad (c \Rightarrow a) \Rightarrow (c \Rightarrow b) &\qquad\qquad& (a \Rightarrow b) \quad \Rightarrow \quad (a \Rightarrow c) \Leftarrow (b \Rightarrow c) \end{align}\]

We say that $\wedge$, and $\vee$ are monotonic because the direction of the implication is preserved. $\Rightarrow$ is monotonic in its antecedent. We say that $\Rightarrow$ is anti-monotonic because the implication needed to flip. This is similar to how multiplying by a negative number flips equality signs.

Note that $=$ and $\neq$ are neither monotonic nor antimonotonic. Their expressions of this form don’t have a nice simplification.


Miscellaneous

Finally, we have all of the laws that I couldn’t find a nice classification for.

Uniqueness of the Complement

Inclusion

Discharge

Portation

Consensus Theorem

Resolution

Conflation


Boolean Algebra Series