Processing math: 100%

Transitivity

In this post we prove various transitivity laws.


(ab)(bc)(ac)

(ab)(bc)=(ac)(bb)Associativity and Commutativity(ac)Specialization


(ab)(bc)(ac)

(ab)(bc)=(¯ab)(¯bc)Material Implication=(¯a¯b)(¯ac)(b¯b)(bc)Distributivity and Associativity=(¯a¯b)(¯ac)F(bc)Noncontradiction=(¯a¯b)(¯ac)(bc)Identity=(¯a¯b)(¯ac)(b(c(c¯b)))Absportion=(¯a¯b)(¯ac)((bc)(¯bc))Associativity and Commutativity=(¯a(¯bc))((bc)(¯bc))Distributivity=(¯a(bc))(¯bc)Distributivity=(¯ab)(¯ac)(¯bc)Distributivity and Associativity(¯ac)Specialization=(ac)Material Implication


(a=b)(b=c)(a=c)

(a=b)(b=c)=((ab)(ab))((bc)(bc))Double Implication=((ab)(ba))((bc)(cb))Mirror 2 times=((ab)(bc))((cb)(ba))Associativity and Commutativity of =(ac)(ca)Transitivity of  =(ac)(ac)Mirror=(a=c)Double Implication


(ab)(b=c)(ac)

(ab)(b=c)=(ab)((bc)(bc))Double Implication=(ab)((bc)(cb))Mirror=((ab)(bc))(cb)Associativity(ac)(cb)Transitivity of  (ac)Specialization


(a=b)(bc)(ac)

(a=b)(bc)=((ab)(ab))(bc)Double Implication=((ab)(ba))(bc)Mirror=(ba)((ab)(bc))Commutativity and Associativity(ba)(ac)Transitivity of  (ac)Specialization

Boolean Algebra Series