Transitivity
In this post we prove various transitivity laws.
(a∧b)∧(b∧c)⇒(a∧c)
(a∧b)∧(b∧c)=(a∧c)∧(b∧b)Associativity and Commutativity⇒(a∧c)Specialization(a⇒b)∧(b⇒c)⇒(a⇒c)
(a⇒b)∧(b⇒c)=(¯a∨b)∧(¯b∨c)Material Implication=(¯a∧¯b)∨(¯a∧c)∨(b∧¯b)∨(b∧c)Distributivity and Associativity=(¯a∧¯b)∨(¯a∧c)∨F∨(b∧c)Noncontradiction=(¯a∧¯b)∨(¯a∧c)∨(b∧c)Identity=(¯a∧¯b)∨(¯a∧c)∨(b∧(c∧(c∨¯b)))Absportion=(¯a∧¯b)∨(¯a∧c)∨((b∧c)∧(¯b∨c))Associativity and Commutativity=(¯a∧(¯b∨c))∨((b∧c)∧(¯b∨c))Distributivity=(¯a∨(b∧c))∧(¯b∨c)Distributivity=(¯a∨b)∧(¯a∨c)∧(¯b∨c)Distributivity and Associativity⇒(¯a∨c)Specialization=(a⇒c)Material Implication(a=b)∧(b=c)⇒(a=c)
(a=b)∧(b=c)=((a⇒b)∧(a⇐b))∧((b⇒c)∧(b⇐c))Double Implication=((a⇒b)∧(b⇒a))∧((b⇒c)∧(c⇒b))Mirror 2 times=((a⇒b)∧(b⇒c))∧((c⇒b)∧(b⇒a))Associativity and Commutativity of ∧=(a⇒c)∧(c⇒a)Transitivity of ⇒=(a⇒c)∧(a⇐c)Mirror=(a=c)Double Implication(a⇒b)∧(b=c)⇒(a⇒c)
(a⇒b)∧(b=c)=(a⇒b)∧((b⇒c)∧(b⇐c))Double Implication=(a⇒b)∧((b⇒c)∧(c⇒b))Mirror=((a⇒b)∧(b⇒c))∧(c⇒b)Associativity⇒(a⇒c)∧(c⇒b)Transitivity of ⇒⇒(a⇒c)Specialization(a=b)∧(b⇒c)⇒(a⇒c)
(a=b)∧(b⇒c)=((a⇒b)∧(a⇐b))∧(b⇒c)Double Implication=((a⇒b)∧(b⇒a))∧(b⇒c)Mirror=(b⇒a)∧((a⇒b)∧(b⇒c))Commutativity and Associativity⇒(b⇒a)∧(a⇒c)Transitivity of ⇒⇒(a⇒c)Specialization