Hyperbolic Trigonometric Functions

Definitions

Recall the relationship of the hyperbolic trig functions to the standard trig functions. I have a series on trigonometry and a post which explains these definitions.

\[\begin{align} &\sinh x = -i \sin (i x) &\qquad\qquad& \sech \ x = \sec (i x) \\[10pt] &\cosh x = \cos (i x) &\qquad\qquad& \csch \ x = i \csc (i x) \\[10pt] &\tanh x = -i \tan (i x) &\qquad\qquad& \coth x = i \cot (i x) \end{align}\]


Hyperbolic Sine

\[\begin{align} \frac{d}{dx} \sinh (x) &= \frac{d}{dx} \left [ - i \sin (i x) \right ] \\[10pt] &= -i \cdot i \cos (i x) \\[10pt] &= \cos (i x) \\[10pt] &= \cosh(x) \end{align}\]


Hyperbolic Cosine

\[\begin{align} \frac{d}{dx} \cosh (x) &= \frac{d}{dx} \left [ \cos (i x) \right ] \\[10pt] &= - i \sin (i x) \\[10pt] &= \sinh(x) \end{align}\]


Hyperbolic Tangent

\[\begin{align} \frac{d}{dx} \tanh (x) &= \frac{d}{dx} \left [ - i \tan (i x) \right ] \\[10pt] &= -i \cdot i \sec^2 (i x) \\[10pt] &= \sec^2 (i x) \\[10pt] &= \sech^2 (x) \end{align}\]


Hyperbolic Secant

\[\begin{align} \frac{d}{dx} \sech (x) &= \frac{d}{dx} \left [ \sec (i x) \right ] \\[10pt] &= i \tan (i x) \sec (i x) \\[10pt] &= - \tanh(x) \sech(x) \end{align}\]

Hyperbolic Cosecant

\[\begin{align} \frac{d}{dx} \csch (x) &= \frac{d}{dx} \left [ - i \csc (i x) \right ] \\[10pt] &= -i \cdot i \cot (i x) \csc(i x) \\[10pt] &= - i \cot (i x) \cdot i \csc(i x) \\[10pt] &= - \coth(x) \csch(x) \end{align}\]

Hyperbolic Cotangent

\[\begin{align} \frac{d}{dx} \coth (x) &= \frac{d}{dx} \left [ i \cot (i x) \right ] \\[10pt] &= - i \cdot i \csc^2 (i x) \\[10pt] &= - \csc^2 (i x) \\[10pt] &= - \csch^2 (x) \end{align}\]

Derivative Proofs Series