Summary of Derivatives

Let $c$ be any constant. Let the derivative of a function $f(x)$ be denoted by $\frac{d}{dx} f(x) = f’(x)$. The following are general properties of the derivative operation

Function Derivative
$c \cdot f(x)$ $c \cdot f’(x)$
$f(x) \pm g(x)$ $f’(x) \pm g’(x)$
$f(x) \cdot g(x)$ $f’(x) \cdot g(x) + f(x) \cdot g’(x)$
$\frac{1}{f(x)}$ $-\frac{f’(x)}{(f(x))^2}$
$\frac{f(x)}{g(x)}$ $\frac{f’(x) \cdot g(x) - f(x) \cdot g’(x)}{(g(x))^2}$
$f^{-1}(x)$ $\frac{1}{f’(f^{-1}(x))}$
$f(g(x))$ $f’(g(x)) \cdot g’(x)$

Let the $n$th derivative of a function $f(x)$ be denoted by $\frac{d^n}{dx^n} f(x) = f^{(n)}(x)$. An additional less commonly used, but interesting property

\[\frac{d^n}{dx^n} [f(x) \cdot g(x)] = \sum_{k=0}^{n} \binom{n}{k} f^{(n-k)}(x) g^{(k)}(x)\]


Let $c$ and $r$ be any constant. Let $b > 1$ be any constant. Let $e$ be Euler’s number and $\ln x = \log_e x$ be the natural logarithm. The following are derivatives of some particular functions.

Function Derivative
$c$ $0$
$x$ $1$
$x^r$ $r x^{r-1}$
$\frac{1}{x}$ $-\frac{1}{x^2}$
$\sqrt{x}$ $\frac{1}{2 \sqrt{x}}$
$\lvert x \rvert$ $\frac{x}{\lvert x \rvert}$
$b^x$ $b^x \ln b$
$e^x$ $e^x$
$\log_b x$ $\frac{1}{x \ln b}$
$\ln x$ $\frac{1}{x}$


We have derivatives of the trigonometric and inverse trigonometric functions.

Function Derivative Condition
$\sin x$ $\cos x$  
$\cos x$ $- \sin x$  
$\tan x$ $\sec^2 x$  
$\sec x$ $\tan x \sec x$  
$\csc x$ $- \cot x \csc x$  
$\cot x$ $-\csc^2 x$  
$\arcsin x$ $\frac{1}{\sqrt{1 - x^2}}$ $\abs{x} \leq 1 $
$\arccos x$ $\frac{- 1}{\sqrt{1 - x^2}}$ $\abs{x} \leq 1 $
$\arctan x$ $\frac{1}{1 + x^2}$  
$\arcsec x$ $\frac{1}{\lvert x \rvert \sqrt{x^2 - 1} }$ $x \geq 1 $
$\arccsc x$ $\frac{- 1}{\lvert x \rvert \sqrt{x^2 - 1} }$ $x \geq 1 $
$\arccot x$ $\frac{- 1}{1 + x^2}$  


We have derivatives of the hyperbolic trigonometric and inverse hyperbolic trigonometric functions.

Function Derivative Condition
$\sinh x$ $\cosh x$  
$\cosh x$ $\sinh x$  
$\tanh x$ $\sech^2 x$  
$\sech x$ $-\tanh x \sech x$  
$\csch x$ $- \coth x \csch x$ $x \neq 0$
$\coth x$ $- \csch^2 x$ $x \neq 0$
$\arcsinh x$ $\frac{1}{\sqrt{1 + x^2}}$  
$\arccosh x$ $\frac{1}{\sqrt{x^2 - 1}}$ $x > 1$
$\arctanh x$ $\frac{1}{1-x^2}$ $\lvert x \rvert < 1$
$\arcsech x$ $\frac{- 1}{\lvert x \rvert \sqrt{1 + x^2} }$ $0 < x < 1$
$\arccsch x$ $\frac{- 1}{\lvert x \rvert \sqrt{1 - x^2} }$ $x \neq 0$
$\arccoth x$ $\frac{1}{1-x^2}$ $\lvert x \rvert > 1$


Derivative Proofs Series