Periodic Functions
Background
We say f(t) is T-periodic if f(t+T)=f(t)∀t∈R
An interesting fact is that if T is irrational, then f must be a constant function. Thus, you can restrict T∈N for all non-trivial cases. However, this will not affect our proof.
The Laplace Transform Proof
Given a T-periodic function f(t)
L{f(t)}=∫∞0f(t)e−st dt=∫T0f(t)e−st dt+∫∞Tf(t)e−st dtlet τ=t−T⟹dt=dτ=∫T0f(t)e−st dt+∫∞0f(τ+T)e−s(τ+T) dτ=∫T0f(t)e−st dt+e−sT∫∞0f(τ)e−sτ dτ=∫T0f(t)e−st dt+e−sTL{f(t)}Now, we do a little algebra to isolate Lf(t), and we get
L{f(t)}=11−e−sT∫T0f(t)e−st dt