Processing math: 100%

Periodic Functions

Background

We say f(t) is T-periodic if f(t+T)=f(t)tR

An interesting fact is that if T is irrational, then f must be a constant function. Thus, you can restrict TN for all non-trivial cases. However, this will not affect our proof.

The Laplace Transform Proof

Given a T-periodic function f(t)

L{f(t)}=0f(t)est dt=T0f(t)est dt+Tf(t)est dtlet τ=tTdt=dτ=T0f(t)est dt+0f(τ+T)es(τ+T) dτ=T0f(t)est dt+esT0f(τ)esτ dτ=T0f(t)est dt+esTL{f(t)}

Now, we do a little algebra to isolate Lf(t), and we get

L{f(t)}=11esTT0f(t)est dt

Laplace Transforms Series