Table of Laplace Transforms

This is a table of bare functions. Using these functions in addition to the results in other tables, we can build up more complicated functions

Given Function Laplace Transform Condition
$0$ $0$  
$1$ $\frac{1}{s}$ $\lvert s \rvert > 0$
$t^n$ $\frac{n!}{s^n}$ $\lvert s \rvert > 0, \quad n \in \mathbb{N}$
$t^{-n}$ divergent $n \in \mathbb{N}$
$e^t$ $\frac{1}{s-1}$ $s \neq 1$
$\sin t$ $\frac{1}{s^2+1}$ $s \neq i$
$\cos t$ $\frac{s}{s^2+1}$ $s \neq i$
$\sinh t$ $\frac{1}{s^2-1}$ $s \neq 1$
$\cosh t$ $\frac{s}{s^2-1}$ $s \neq 1$


Now I give a table that lets us manipulate Laplace transformation addition and scalar multiplication

Given Function Laplace Transform Condition
$f(t) \pm g(t)$ $F(s) \pm G(s)$  
$\alpha f(t)$ $\alpha F(s)$  
$f(-t)$ $F(-s)$  
$f(bt)$ $\frac{1}{\lvert b \rvert}F(s/b)$ $b \neq 0$
$f(t-c)$ $e^{-cs}F(s)$ $f(t) = 0 \quad \forall t < 0$
$e^{\alpha t} f(t)$ $F(s-\alpha)$ $\lvert s \rvert > \lvert \alpha \rvert$


Now, I give function multiplication. The trig ones aren’t super useful, but I prove them in the series.

Given Function Laplace Transform Condition
$\sin(t) f(t)$ $\frac{1}{2i}(F(s+i) - F(s-i))$  
$\cos(t) f(t)$ $\frac{1}{2}(F(s+i) + F(s-i))$  
$\sinh(t) f(t)$ $\frac{1}{2}(F(s+1) - F(s-1))$  
$\cosh(t) f(t)$ $\frac{1}{2}(F(s+1) + F(s-1))$  
$\theta(t-c)f(t-c)$ $e^{-cs} F(s)$  
$\delta(t-c)f(t-d)$ $e^{-cs} f(c-d)$ $c \geq 0$


Next, I provide the interaction between Laplace transforms, derivatives, and integrals

Given Function Laplace Transform Condition
$t^n f(t)$ $(-1)^n \frac{d^n}{d^n s} F(s)$ $n \in \mathbb{N}$
$F$ is $n$-times differentiable
$f$ is continuous
$t^{-n} f(t)$ $\int_{s}^{\infty} \cdots \int_{s}^{\infty} F(u) \ du_1 \cdots \ du_n$ $n \in \mathbb{N}$
$F$ is $n$-times integrable
$f$ is continuous
$\frac{d^n}{d^n t} f(t)$ $s^n F(s) - \sum_{k=0}^{n-1} s^{n-k-1} f^{(k)}(0)$ $n \in \mathbb{N}$
$f$ is $n$-times differentiable
$\frac{d^k}{d^k t} f(t) = o(e^t) \quad \forall k < n$
$\int_0^s \cdots \int_0^s f(t) \ du_1 \cdots \ du_n$ $F(s) / s^n$ $n \in \mathbb{N}$
$F$ is $n$-times integrable
$\int_0^s \cdots \int_0^s f(t) \ du_1 \cdots \ du_n = o(e^t) \quad \forall k < n$


Finally, we have two miscellaneous identities for periodic functions and convolution

Given Function Laplace Transform Condition
$f(t)$ $\frac{1}{1 - e^{-Ts}} \int_{0}^T f(t) e^{-st} \ dt$ $f(t)$ is $T$-periodic
$f(t) * g(t)$ $F(s) \cdot G(s)$ $f(t) = g(t) = 0 \quad \forall t < 0$


Laplace Transforms Series