Infinite Limits

Limits that Equal Infinity

Consider the function $f(x) = \frac{1}{(x-3)^2}$.

We currently cannot describe what happens at $x = 3$. This limit does not approach a finite value. Thus, we have to extend the allowable values of $L$ to the extended real numbers \(\{ - \infty \} \cup \mathbb{R} \cup \{ \infty \}\). Now, we have to define what it means for a limit to equal positive or negative infinity. Suppose $a \in \mathbb{R}$.

\[\lim_{x \rightarrow a} f(x) = \infty \qquad \iff \qquad \forall M > 0 \quad \exists \delta > 0 \quad \text{s.t.} \quad 0 < \lvert x - a \rvert < \delta \implies f(x) > M\] \[\lim_{x \rightarrow a} f(x) = -\infty \qquad \iff \qquad \forall M > 0 \quad \exists \delta > 0 \quad \text{s.t.} \quad 0 < \lvert x - a \rvert < \delta \implies f(x) < -M\]

Intuitively, this is saying no matter what upperbound I give you, given a point sufficiently close to $a$, the function will surpass this threshold.

Of course, you can break this up into its left- and right-handed limits just as we did before. Often you have to in order to properly analyze functions. For example, $f(x) = \frac{1}{x-3}$.

\[\lim_{x \rightarrow 3^-} \frac{1}{x-3} = -\infty \qquad\qquad \lim_{x \rightarrow 3^+} \frac{1}{x-3} = \infty\]

Therefore, $\lim_{x \rightarrow 3} \frac{1}{x-3}$ is undefined (just as before).


Limits that Approach Infinity

In the above, we assumed that \(L \in \{ -\infty, \infty \}\) and $a \in \mathbb{R}$. If the limit exists under these conditions it is called an infinite discontinuity or a vertical asymptote. Here, we are going to assume the opposite, i.e. \(a \in \{ -\infty, \infty \}\) and $L \in \mathbb{R}$. This will create a horizontal asymptote.

\[\lim_{x \rightarrow \infty} f(x) = L \qquad \iff \qquad \forall \epsilon > 0 \quad \exists N > 0 \quad \text{s.t.} \quad x > N \implies 0 < \lvert f(x) - L \rvert < \epsilon\] \[\lim_{x \rightarrow -\infty} f(x) = L \qquad \iff \qquad \forall \epsilon > 0 \quad \exists N > 0 \quad \text{s.t.} \quad x < -N \implies 0 < \lvert f(x) - L \rvert < \epsilon\]

This is the same as before but flipped 90 degrees. No matter how close to $L$ we get, I can always find a large enough value of $x$ such that $f(x)$ falls within that range.


All the Infinities

Finally, we can assume that both \(a, L \in \{ -\infty, \infty \}\). There are four combinations.

\[\lim_{x \rightarrow \infty} f(x) = \infty \qquad \iff \qquad \forall M > 0 \quad \exists N > 0 \quad \text{s.t.} \quad x > N \implies f(x) > M\] \[\lim_{x \rightarrow -\infty} f(x) = \infty \qquad \iff \qquad \forall M > 0 \quad \exists N > 0 \quad \text{s.t.} \quad x < -N \implies f(x) > M\] \[\lim_{x \rightarrow \infty} f(x) = -\infty \qquad \iff \qquad \forall M > 0 \quad \exists N > 0 \quad \text{s.t.} \quad x > N \implies f(x) < -M\] \[\lim_{x \rightarrow -\infty} f(x) = -\infty \qquad \iff \qquad \forall M > 0 \quad \exists N > 0 \quad \text{s.t.} \quad x < -N \implies f(x) < -M\]


Limit Laws

I am not going to prove it here (because it would take an entire new series), but all of the previous limit laws also hold for these limit definitions.

Limits and Continuity Series