Circular Disc
We are moving onto $2\text{D}$ surfaces, which unintuitively are easier in some respects. A topologist would call a “flat disc” a $2\text{D}$ ball.
Parameterizing the Surface
We can parameterize the flat disc using cylindrical coordinates.
\[\b{r}(s, \phi) = s \cos \phi \; \u{x} + s \sin \phi \; \u{y} = s \; \u{s} = \b{s} \\[10pt] A = \{ \b{r}(s, \phi) \ : \ 0 \leq s \leq R \quad 0 \leq \phi < 2\pi \}\]Now, we find the differential area element. We can prove this both geometrically (see the right diagram above) and rigorously using calculus.
\[\frac{\partial \b{r}}{\partial s} = \cos \phi \; \u{x} + \sin \phi \; \u{y} = \u{s} \qquad \frac{\partial \b{r}}{\partial \phi} = - s \sin \phi \; \u{x} + s \cos \phi \; \u{y} = s \; \u{\phi}\] \[d \b{A} = \left ( \frac{\partial \b{r}}{\partial s} ds \right ) \times \left ( \frac{\partial \b{r}}{\partial \phi} d\phi \right ) = (ds \; \u{s}) \times (s \; d\phi \; \u{\phi}) = s \; ds \; d\phi \; \u{z}\] \[dA = \abs{ d \b{A} } = s \; ds \; d\phi\]