Ellipsoid
This is the first ellipse-related shape that we can actually compute!
Parameterizing the Volume
We use modified spherical coordinates, which we have to express in Cartesian coordinates.
\[\b{r}(t, \theta, \phi) = at \sin \theta \; \cos \phi \; \u{x} + bt \sin \theta \sin \phi \; \u{y} + ct \cos \theta \; \u{z} \\[10pt] V = \{ \b{r}(t, \theta, \phi) \ : \ 0 \leq t \leq 1 \quad 0 \leq \theta \leq \pi \quad 0 \leq \phi < 2\pi \}\]Therefore
\[\begin{align} \frac{\partial \b{r}}{\partial t} &= a \sin \theta \cos \phi \; \u{x} + b \sin \theta \sin \phi \; \u{y} + c \cos \theta \; \u{z} \\[10pt] \frac{\partial \b{r}}{\partial \theta} &= at \cos \theta \cos \phi \; \u{x} + bt \cos \theta \sin \phi \; \u{y} - ct \sin \theta \; \u{z} \\[10pt] \frac{\partial \b{r}}{\partial \phi} &= - at \sin \theta \sin \phi \; \u{x} + bt \sin \theta \cos \phi \; \u{y} \end{align}\]This is pretty nasty because we have to do everything in Cartesian coordinates.
\[\begin{align} dV &= \left \lvert \begin{array}{ccc} a \sin \theta \cos \phi \; dt & b \sin \theta \sin \phi \; dt & c \cos \theta \; dt \\ at \cos \theta \cos \phi \; d\theta & bt \cos \theta \sin \phi \; d\theta & - ct \sin \theta \; d\theta \\ - at \sin \theta \sin \phi \; d\phi & bt \sin \theta \cos \phi \; d\phi & 0 \end{array} \right \rvert \\[10pt] &= (- at \sin \theta \sin \phi \; d\phi) \cdot \left \lvert \begin{array}{cc} b \sin \theta \sin \phi \; dt & c \cos \theta \; dt \\ bt \cos \theta \sin \phi \; d\theta & - ct \sin \theta \; d\theta \end{array} \right \rvert - (bt \sin \theta \cos \phi \; d\phi) \cdot \left \lvert \begin{array}{cc} a \sin \theta \cos \phi \; dt & c \cos \theta \; dt \\ at \cos \theta \cos \phi \; d\theta & - ct \sin \theta \; d\theta \end{array} \right \rvert + (0) \cdot \left \lvert \begin{array}{cc} b \sin \theta \sin \phi \; dt & c \cos \theta \; dt \\ bt \cos \theta \sin \phi \; d\theta & - ct \sin \theta \; d\theta \end{array} \right \rvert \\[10pt] &= (- at \sin \theta \sin \phi \; d\phi) \left [ - bc \; t \; \sin^2 \theta \sin \phi \; dt \; d\theta - bc \; t \; \cos^2 \theta \sin \phi \; dt \; d\theta \right ] + (bt \sin \theta \cos \phi \; d\phi) \left [ ac \; t \; \sin^2 \theta \cos \phi \; dt \; d\theta + ac \; t \; \cos^2 \theta \cos \phi \; dt \; d\theta \right ] \\[10pt] &= abc \; t^2 \; \sin \theta \left [ (\sin^2 \theta + \cos^2 \theta) \sin^2 \phi + (\sin^2 \theta + \cos^2 \theta) \cos^2 \phi \right ] \; dt \; d\theta \; d\phi \\[10pt] &= abc \; t^2 \; \sin \theta \left [ \sin^2 \phi + \cos^2 \phi \right ] \; dt \; d\theta \; d\phi \\[10pt] &= abc \; t^2 \; \sin \theta \; dt \; d\theta \; d\phi \end{align}\]