Hoop (Cylindrical Shell)
Some also call this a “zero-thickness torus”.
Parametarizing the Surface
We can do this with just standard cylindrical coordinates. Recall that in the circle post we showed that $\frac{\partial}{\partial \phi} \u{s} = \u{\phi}$
\[\b{r}(\phi, z) = R \; \u{s} + z \; \u{z} \\[10pt] A \{ \b{r}(\phi, z) \ : \ 0 \leq \phi < 2\pi \quad -L/2 \leq z \leq L/2 \}\]Therefore
\[\frac{\partial \b{r}}{\partial \phi} = R \; \u{\phi} \qquad \frac{\partial \b{r}}{\partial z} = \u{z}\] \[d \b{A} = \left ( \frac{\partial \b{r}}{\partial \phi} d\phi \right ) \times \left ( \frac{\partial \b{r}}{\partial z} dz \right ) = R \; d\phi \; dz \; \u{s}\] \[dA = \abs{ d \b{A} } = R \; d\phi \; dz\]