Spherical Shell
Sometimes called a hollow sphere.
Parameterizing the Surface
We can do this with just standard spherical coordinates.
\[\b{r}(\theta, \phi) = R \sin \theta \cos \phi \; \u{x} + R \sin \theta \sin \phi \; \u{y} + R \cos \theta \u{z} = R \; \u{r} \\[10pt] A = \{ \b{r}(\theta, \phi) \ : \ 0 \leq \theta < \pi \quad 0 \leq \phi < 2\pi \}\]Therefore
\[\frac{\partial \b{r}}{\partial \theta} = R \cos \theta \cos \phi \; \u{x} + R \sin \cos \sin \phi \; \u{y} - R \sin \theta \u{z} = R \; \u{\theta} \\[10pt] \frac{\partial \b{r}}{\partial \phi} = - R \sin \theta \sin \phi \; \u{x} + R \sin \theta \cos \phi \; \u{y} = R \sin \theta \; \u{\phi}\] \[d \b{A} = \left ( \frac{\partial \b{r}}{\partial \theta} d\theta \right ) \times \left ( \frac{\partial \b{r}}{\partial \phi} d\phi \right ) = R^2 \sin \theta \; d\theta \; d\phi \; \u{r}\] \[dA = \abs{ d \b{A} } = R^2 \sin \theta \; d\theta \; d\phi\]