Sum and Difference Identities
Cosine
In a previous post, we proved the difference identity for cosine. Using the opposite angle identities, we prove the sum identity.
cos(α+β)=cos(α−(−β))=cos(α)cos(−β)+sin(α)sin(−β)=cos(α)cos(β)−sin(α)sin(β)Thus, we can summarize both identities as
cos(α±β)=cos(α)cos(β)∓sin(α)sin(β)The ± and ∓ notation means that if one is positive, then the other is negative, and vice versa.
Sine
sin(α±β)=cos(π/2−(α±β))=cos((π/2−α)∓β)=cos(π/2−α)cos(β)±sin(π/2−α)sin(β)=sin(α)cos(β)±cos(α)sin(β)Tangent
tan(α±β)=sin(α±β)cos(α±β)=sin(α)cos(β)±cos(α)sin(β)cos(α)cos(β)∓sin(α)sin(β)divide both numerator and demoninator by cos(α)cos(β)=sin(α)cos(α)cos(β)cos(β)±cos(α)cos(α)sin(β)cos(β)cos(α)cos(α)cos(β)cos(β)∓sin(α)cos(α)sin(β)cos(β)=tan(α)⋅1±1⋅tan(β)1⋅1∓tan(α)tan(β)=tan(α)±tan(β)1∓tan(α)tan(β)Secant
The sum/difference formulas for secant are a bit messy and probably not useful, but we can derive them.
sec(α±β)=1cos(α±β)=1cos(α)cos(β)∓sin(α)sin(β)=11sec(α)sec(β)∓1csc(α)csc(β)=1csc(α)csc(β)∓sec(α)sec(β)sec(α)sec(β)csc(α)csc(β)=sec(α)sec(β)csc(α)csc(β)csc(α)csc(β)∓sec(α)sec(β)Cosecent
The sum/difference formulas for cosecant are a bit messy and probably not useful, but we can derive them.
csc(α±β)=1sin(α±β)=1sin(α)cos(β)±cos(α)sin(β)=11csc(α)sec(β)±1sec(α)csc(β)=1sec(α)csc(β)±csc(α)sec(β)sec(α)sec(β)csc(α)csc(β)=sec(α)sec(β)csc(α)csc(β)sec(α)csc(β)±csc(α)sec(β)Cotangent
This derivation is almost exactly the same as the one for tangent.
cot(α±β)=cos(α±β)sin(α±β)=cos(α)cos(β)∓sin(α)sin(β)sin(α)cos(β)±cos(α)sin(β)divide both numerator and demoninator by sin(α)sin(β)=cos(α)sin(α)cos(β)sin(β)∓sin(α)sin(α)sin(β)sin(β)sin(α)sin(α)cos(β)sin(β)±cos(α)sin(α)sin(β)sin(β)=cot(α)cot(β)∓1⋅11⋅cot(β)±cot(α)⋅1=cot(α)cot(β)∓1cot(β)±cot(α)