Processing math: 100%

Sum and Difference Identities

Cosine

In a previous post, we proved the difference identity for cosine. Using the opposite angle identities, we prove the sum identity.

cos(α+β)=cos(α(β))=cos(α)cos(β)+sin(α)sin(β)=cos(α)cos(β)sin(α)sin(β)

Thus, we can summarize both identities as

cos(α±β)=cos(α)cos(β)sin(α)sin(β)

The ± and notation means that if one is positive, then the other is negative, and vice versa.


Sine

sin(α±β)=cos(π/2(α±β))=cos((π/2α)β)=cos(π/2α)cos(β)±sin(π/2α)sin(β)=sin(α)cos(β)±cos(α)sin(β)


Tangent

tan(α±β)=sin(α±β)cos(α±β)=sin(α)cos(β)±cos(α)sin(β)cos(α)cos(β)sin(α)sin(β)divide both numerator and demoninator by cos(α)cos(β)=sin(α)cos(α)cos(β)cos(β)±cos(α)cos(α)sin(β)cos(β)cos(α)cos(α)cos(β)cos(β)sin(α)cos(α)sin(β)cos(β)=tan(α)1±1tan(β)11tan(α)tan(β)=tan(α)±tan(β)1tan(α)tan(β)

Secant

The sum/difference formulas for secant are a bit messy and probably not useful, but we can derive them.

sec(α±β)=1cos(α±β)=1cos(α)cos(β)sin(α)sin(β)=11sec(α)sec(β)1csc(α)csc(β)=1csc(α)csc(β)sec(α)sec(β)sec(α)sec(β)csc(α)csc(β)=sec(α)sec(β)csc(α)csc(β)csc(α)csc(β)sec(α)sec(β)

Cosecent

The sum/difference formulas for cosecant are a bit messy and probably not useful, but we can derive them.

csc(α±β)=1sin(α±β)=1sin(α)cos(β)±cos(α)sin(β)=11csc(α)sec(β)±1sec(α)csc(β)=1sec(α)csc(β)±csc(α)sec(β)sec(α)sec(β)csc(α)csc(β)=sec(α)sec(β)csc(α)csc(β)sec(α)csc(β)±csc(α)sec(β)

Cotangent

This derivation is almost exactly the same as the one for tangent.

cot(α±β)=cos(α±β)sin(α±β)=cos(α)cos(β)sin(α)sin(β)sin(α)cos(β)±cos(α)sin(β)divide both numerator and demoninator by sin(α)sin(β)=cos(α)sin(α)cos(β)sin(β)sin(α)sin(α)sin(β)sin(β)sin(α)sin(α)cos(β)sin(β)±cos(α)sin(α)sin(β)sin(β)=cot(α)cot(β)111cot(β)±cot(α)1=cot(α)cot(β)1cot(β)±cot(α)

Trigonometry Series