Summary of Trigonometric Identities
31 Aug 2022
The Unit Circle and Common Angles
Degrees
Radians
cos
sin
tan
sec
csc
cot
$0^{\circ}$
$0$
$1$
$0$
$0$
$1$
undefined
undefined
$30^{\circ}$
$\pi/6$
$\frac{\sqrt{3}}{2}$
$\frac{1}{2}$
$\frac{1}{\sqrt{3}}$
$\frac{2}{\sqrt{3}}$
$2$
$\sqrt{3}$
$45^{\circ}$
$\pi/4$
$\frac{1}{\sqrt{2}}$
$\frac{1}{\sqrt{2}}$
$1$
$\sqrt{2}$
$\sqrt{2}$
$1$
$60^{\circ}$
$\pi/3$
$\frac{1}{2}$
$\frac{\sqrt{3}}{2}$
$\sqrt{3}$
$2$
$\frac{2}{\sqrt{3}}$
$\frac{1}{\sqrt{3}}$
$90^{\circ}$
$\pi/2$
$0$
$1$
undefined
undefined
$1$
$0$
$120^{\circ}$
$2\pi/3$
$-\frac{1}{2}$
$\frac{\sqrt{3}}{2}$
$-\sqrt{3}$
$-2$
$\frac{2}{\sqrt{3}}$
$-\frac{1}{\sqrt{3}}$
$135^{\circ}$
$3\pi/4$
$-\frac{1}{\sqrt{2}}$
$\frac{1}{\sqrt{2}}$
$-1$
$-\sqrt{2}$
$\sqrt{2}$
$-1$
$150^{\circ}$
$5\pi/6$
$-\frac{\sqrt{3}}{2}$
$\frac{1}{2}$
$-\frac{1}{\sqrt{3}}$
$-\frac{2}{\sqrt{3}}$
$2$
$-\sqrt{3}$
$180^{\circ}$
$\pi$
$-1$
$0$
$0$
$-1$
undefined
undefined
$210^{\circ}$
$7\pi/6$
$-\frac{\sqrt{3}}{2}$
$-\frac{1}{2}$
$\frac{1}{\sqrt{3}}$
$-\frac{2}{\sqrt{3}}$
$-2$
$\sqrt{3}$
$225^{\circ}$
$5\pi/4$
$-\frac{1}{\sqrt{2}}$
$-\frac{1}{\sqrt{2}}$
$1$
$-\sqrt{2}$
$-\sqrt{2}$
$1$
$240^{\circ}$
$4\pi/3$
$-\frac{1}{2}$
$-\frac{\sqrt{3}}{2}$
$\sqrt{3}$
$-2$
$-\frac{2}{\sqrt{3}}$
$\frac{1}{\sqrt{3}}$
$270^{\circ}$
$3\pi/2$
$0$
$-1$
undefined
undefined
$-1$
$0$
$300^{\circ}$
$5\pi/3$
$\frac{1}{2}$
$-\frac{\sqrt{3}}{2}$
$-\sqrt{3}$
$2$
$-\frac{2}{\sqrt{3}}$
$-\frac{1}{\sqrt{3}}$
$315^{\circ}$
$7\pi/4$
$\frac{1}{\sqrt{2}}$
$-\frac{1}{\sqrt{2}}$
$-1$
$\sqrt{2}$
$-\sqrt{2}$
$-1$
$330^{\circ}$
$11\pi/6$
$\frac{\sqrt{3}}{2}$
$-\frac{1}{2}$
$-\frac{1}{\sqrt{3}}$
$\frac{2}{\sqrt{3}}$
$-2$
$-\sqrt{3}$
Complementary, Supplementary, and Opposite Angles
\[\begin{align}
&\cos(\pi/2 - \theta) = \sin(\theta) &\qquad& \sin(\pi/2 - \theta) = \cos(\theta) &\qquad& \tan(\pi/2 - \theta) = \cot(\theta) \\[10pt]
&\cos(\pi - \theta) = -\cos(\theta) &\qquad& \sin(\pi - \theta) = \sin(\theta) &\qquad& \tan(\pi - \theta) = -\tan(\theta) \\[10pt]
&\cos(- \theta) = \cos(\theta) &\qquad& \sin(- \theta) = -\sin(\theta) &\qquad& \tan(- \theta) = -\tan(\theta)
\end{align}\]
\[\begin{align}
&\sec(\pi/2 - \theta) = -\sec(\theta) &\qquad& \csc(\pi/2 - \theta) = \csc(\theta) &\qquad& \cot(\pi/2 - \theta) = \tan(\theta) \\[10pt]
&\sec(\pi - \theta) = \csc(\theta) &\qquad& \csc(\pi - \theta) = \sec(\theta) &\qquad& \cot(\pi - \theta) = -\cot(\theta) \\[10pt]
&\sec(- \theta) = \sec(\theta) &\qquad& \csc(- \theta) = -\csc(\theta) &\qquad& \cot(- \theta) = -\cot(\theta)
\end{align}\]
Pythagorean Identities
\[\sin^2 \theta + \cos^2 \theta = 1 \qquad
\tan^2 \theta + 1 = \sec^2 \theta \qquad
1 + \cot^2 \theta = \csc^2 \theta\]
Sum and Difference Identities
\[\begin{align}
&\cos(\alpha \pm \beta) = \cos(\alpha)\cos(\beta) \mp \sin(\alpha)\sin(\beta)
&\qquad\qquad& \sec(\alpha \pm \beta) = \frac{\sec(\alpha)\sec(\beta)\csc(\alpha)\csc(\beta)}{\csc(\alpha)\csc(\beta) \mp \sec(\alpha)\sec(\beta)} \\[15pt]
&\sin(\alpha \pm \beta) = \sin(\alpha)\cos(\beta) \pm \cos(\alpha)\sin(\beta)
&\qquad\qquad& \csc(\alpha \pm \beta) = \frac{\sec(\alpha)\sec(\beta)\csc(\alpha)\csc(\beta)}{\sec(\alpha)\csc(\beta) \pm \csc(\alpha)\sec(\beta)} \\[15pt]
&\tan(\alpha \pm \beta) = \frac{\tan(\alpha) \pm \tan(\beta)}{1 \mp \tan(\alpha)\tan(\beta)}
&\qquad\qquad& \cot(\alpha \pm \beta) = \frac{\cot(\alpha) \cot(\beta) \mp 1}{\cot(\beta) \pm \cot(\alpha)}
\end{align}\]
Double Angle Identities
\[\begin{align}
&\cos(2\theta) = \cos^2 \theta - \sin^2 \theta \quad = \quad 1 - 2\sin^2 \theta \quad = \quad 2\cos^2 \theta - 1 \\[15pt]
&\sin(2\theta) = 2 \sin \theta \cos \theta \\[15pt]
&\tan(2\theta) = \frac{2\tan \theta}{1 - \tan^2 \theta} \quad = \quad \frac{2}{\cot \theta - \tan \theta} \\[15pt]
&\sec(2 \theta) = \frac{\sec^2 \theta \csc^2 \theta}{\csc^2 \theta - \sec^2 \theta} \quad = \quad \frac{1 + \tan^2 \theta}{1 - \tan^2 \theta} \\[15pt]
&\csc(2 \theta) = \frac{1}{2}\sec \theta \csc \theta \quad = \quad \frac{1}{2} \left ( \tan \theta + \cot \theta \right ) \\[15pt]
&\cot(2 \theta) = \frac{\cot^2 \theta - 1}{2\cot \theta} \quad = \quad \frac{1}{2} (\cot \theta - \tan \theta)
\end{align}\]
Power Reduction Identities
\[\cos^2 \theta = \frac{1}{2}(1 + \cos(2 \theta)) \qquad\qquad
\sin^2 \theta = \frac{1}{2}(1 - \cos(2 \theta)) \qquad\qquad
\tan^2 \theta = \frac{1 - \cos(2 \theta)}{1 + \cos(2 \theta)}\]
Half Angle Identities
\[\cos (\theta/2) = \pm \sqrt{\frac{1 + \cos \theta}{2}} \qquad\qquad \sin (\theta/2) = \pm \sqrt{\frac{1 - \cos \theta}{2}}\]
\[\tan (\theta/2) = \pm \sqrt{ \frac{1 - \cos \theta}{1 + \cos \theta} } \quad=\quad \pm \frac{\sin \theta}{1 + \cos \theta} \quad=\quad \pm \frac{1 - \cos \theta}{\sin \theta}\]
Product-to-Sum Identities
\[\begin{align}
&\cos \alpha \cos \beta = \frac{1}{2} (\cos(\alpha - \beta) + \cos(\alpha + \beta)) \qquad\qquad
&\sin \alpha \cos \beta = \frac{1}{2} (\sin(\alpha + \beta) + \sin(\alpha - \beta)) \\[15pt]
&\sin \alpha \sin \beta = \frac{1}{2} (\cos(\alpha - \beta) - \cos(\alpha + \beta)) \qquad\qquad
&\cos \alpha \sin \beta = \frac{1}{2} (\sin(\alpha + \beta) - \sin(\alpha - \beta))
\end{align}\]
Sum-to-Product Identities
\[\begin{align}
&\cos \alpha + \cos \beta = 2 \cos \left ( \frac{\alpha + \beta}{2} \right ) \cos \left ( \frac{\alpha - \beta}{2} \right )
&\qquad
&\sin \alpha + \sin \beta = 2 \sin \left ( \frac{\alpha + \beta}{2} \right ) \cos \left ( \frac{\alpha - \beta}{2} \right )\\[15pt]
&\cos \alpha - \cos \beta = 2 \sin \left ( \frac{\alpha + \beta}{2} \right ) \sin \left ( \frac{\alpha - \beta}{2} \right )
&\qquad
&\sin \alpha - \sin \beta = 2 \cos \left ( \frac{\alpha + \beta}{2} \right ) \sin \left ( \frac{\alpha - \beta}{2} \right )
\end{align}\]
Euler’s Identity
\[e^{i\theta} = \cos \theta + i \sin \theta
\qquad\qquad
\cos \theta = \frac{1}{2} (e^{i\theta} + e^{-i\theta})
\qquad\qquad
\sin \theta = \frac{1}{2i} (e^{i\theta} - e^{-i\theta})\]
Hyperbolic Trigonometric Functions
Exponential Definitions
\[\begin{align}
\sinh x &= \frac{e^{x} - e^{-x}}{2} = \frac{e^{2x} - 1}{2e^{x}} = \frac{1 - e^{-2x}}{2e^{-x}} \\[15pt]
\cosh x &= \frac{e^{x} + e^{-x}}{2} = \frac{e^{2x} + 1}{2e^{x}} = \frac{1 + e^{-2x}}{2e^{-x}} \\[15pt]
\tanh x &= \frac{e^{x} - e^{-x}}{e^{x} + e^{-x}} = \frac{e^{2x} - 1}{e^{2x} + 1} \\[15pt]
\csch x &= \frac{1}{\sinh x} \\[10pt]
\sech x &= \frac{1}{\cosh x} \\[10pt]
\coth x &= \frac{1}{\tanh x} = \frac{\cosh x}{\sinh x}
\end{align}\]
Relationship to Standard Trigonometric Functions
\[\begin{align}
&\sinh x = -i \sin (i x) &\qquad\qquad& \sin x = -i \sinh(ix) \\[10pt]
&\cosh x = \cos (i x) &\qquad\qquad& \cos x = \cosh(ix) \\[10pt]
&\tanh x = -i \tan (i x) &\qquad\qquad& \tan x = -i \tanh(ix) \\[10pt]
&\sech x = \sec (i x) &\qquad\qquad& \sec x = \sech(ix) \\[10pt]
&\csch x = i \csc (i x) &\qquad\qquad& \csc x = i \csch(ix) \\[10pt]
&\coth x = i \cot (i x) &\qquad\qquad& \cot x = i \coth(ix)
\end{align}\]
Inverse Functions
\[\begin{align}
&\arcsinh(x) = \ln \left ( x + \sqrt{x^2 + 1} \right )
&& \text{for all } x \\[10pt]
&\arccosh(x) = \ln \left ( x + \sqrt{x^2 - 1} \right )
&& x \geq 1 \\[10pt]
&\arctanh(x) = \frac{1}{2} \ln \left ( \frac{1+x}{1-x} \right )
&& \abs{x} < 1 \\[10pt]
&\arcsech(x) = \ln \left ( \frac{1}{x} + \sqrt{\frac{1}{x^2} - 1} \right )
&& x \neq 0 \\[10pt]
&\arccsch(x) = \ln \left ( \frac{1}{x} + \sqrt{\frac{1}{x^2} + 1} \right )
&& 0 < x \leq 1 \\[10pt]
&\arccoth(x) = \frac{1}{2} \ln \left ( \frac{x+1}{x-1} \right )
&& \abs{x} > 1
\end{align}\]